博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Uber开源基于web的自主可视化系统,可共享数据
阅读量:6253 次
发布时间:2019-06-22

本文共 1419 字,大约阅读时间需要 4 分钟。

研究公司ABI的数据显示,到2025年,将有800多万辆无人驾驶汽车出现在公共道路上,它们都有一些共同点:传感器、功能强大的个人电脑和机器学习算法。Nvidia、英特尔的Mobileye、百度等公司提供工具或平台,将汽车所看到的路况信息以可视化的形式展现在现实世界中。

不过,在Uber的研发人员看来,这些工具并不够完美,由于它们所摄取的文件规模很大,因此非常不利于分享,所以在今天,Uber开源了自主可视化系统(AVS)。

\"image\"

这套自主可视化系统(AVS)是一种独立的基于web的技术,研发团队将其描述为:理解和共享自主系统数据的一种新方式。负责开发其自动驾驶汽车平台的Uber部门——先进技术小组(Advanced Technologies Group,ATG)也使用了这一套件,包括Voyage和Applied Intuition在内的多家公司已经承诺使用这一套件。

“有了AVS的抽象可视化,开发者可以专注于驱动系统、远程辅助、地图绘制和仿真的核心自主能力。”Uber在一篇博客中写道:“AVS让开发者不必为他们的自动驾驶汽车开发定制的可视化软件。”

\"image\"

Uber表示,AVS团队使用模块化作为指导原则,在层中进行构建,这样自治堆栈中的组件就可以独立地根据上下文进行演化或定制,而不需要在整个系统范围内进行更改。这使得Uber的内部团队可以使用它来查看日志和进行地图维护,例如,同时保持其足够的可扩展性,可适用于无人机、机器人、卡车运输和车队管理等行业。

AVS包括两个核心支柱:XVIZ和streetscape. gl。XVIZ是一个提供、管理和描述自动生成的系统数据的规范;streetscape.gl是一个用于构建web应用程序的工具包,用于在XVIZ协议中接收数据。

根据Uber的介绍, XVIZ streams是一系列离散的更新,在特定的时间使用原语,或对象描述像相机图像、激光雷达点云、轨迹和车辆速度等随时间的变化,它包含了一个服务器端编码器和生成器,在客户机端包含一个解码器、数据缓冲区和同步器。模式结构的视图和显示系统跨客户端工作,使工程师能够探索和查找状态,并将单独的流更新绑定到单个对象中。

\"image\"

AVS的UI为带有数据的对象绑定了图形化面板,对象可以单独设计样式或分配样式类,而流(steam)可以通过分层命名来组织,其中元数据部分列出了它们的类型、相对转换等。

至于streetscape. gl,它是建立在vis.gl之上的,这是Uber的WebGL支持的开源可视化框架集合,它具有高度可样式化的组件,用于将XVIZ数据流转换为3D视区、图表、表格、视频等。此外,它还处理数据流、摄像头、动态样式以及与3D对象的交互等时间同步,支持实时回放和具有数十万几何图形的场景。

Uber表示,计划在未来通过更多的数据源和规范、性能优化以及更丰富的功能来增强AVS。他们在博客中写道:

我们创建了AVS,以满足Autonomy生态系统中每个人的需求,包括工程师、车辆运营商、分析师和专业开发人员。自动化工程师可以用XVIZ轻松地描述他们的系统,用有限的开销对自主系统进行可视化测试。专业开发人员可以使用streetscape.gl快速构建具有强大性能特征和简化集成的数据源无关应用。最后,运营商可以跨多个应用程序以标准可视格式(包括视频)查看数据,从而简化协作、了解知识、进行更深入的分析,并提升对数据质量的信任。

参考链接:

转载地址:http://oyfsa.baihongyu.com/

你可能感兴趣的文章
easyui combobox两种不同的数据加载方式
查看>>
javascript 深拷贝
查看>>
【代码小记】无
查看>>
BarTender 2016表单中的“秤显示”控件
查看>>
11月20日学习内容整理:jquery插件
查看>>
Arduino入门之前
查看>>
zoj 1904 Beavergnaw 计算圆柱和圆台的体积
查看>>
darknet源码学习
查看>>
移动端头部meta
查看>>
Redis客户端集群
查看>>
javascript基础篇:函数
查看>>
[CI] 使用Jenkins自动编译部署web应用
查看>>
SVN与TortoiseSVN实战:补丁详解
查看>>
java一些面试题
查看>>
干货型up主
查看>>
获取页面中所有dropdownlist类型控件
查看>>
stark组件(2):提取公共视图函数、URL分发和设置别名
查看>>
android——使用Interceptor设置缓存来给服务器减负
查看>>
样式独立性的解决方案
查看>>
读《淘宝数据魔方技术架构解析》有感
查看>>